이준엽(李俊燁) 교수
수학과
이준엽 교수는 수학전공 교수로서 수치해석과 과학계산을 전공하고 있다. 뉴욕대학교(NYU) Courant Institute에서 박사학위를 취득하였으며, <SIAM Review>, <Inverse Problems>, <J. of Computation Physics> 등을 포함하는 SCI 저널에 역문제의 수치해법 및 수치미분방정식의 고속해법 관련한 40여 편의 논문을 게재하였다. 대외적으로는 한국연구재단 자연과학단장, 한국산업응용수학회(KSIAM)의 부회장, 총무이사, 편집이사 등과 대한수학회(KMS)의 전산이사와 사업이사 등을 역임하였고, 교내에서는 관리처장, 입학관리부처장, 수리물리과학부 학부장과 중점연구소인 수리과학연구소장 직을 수행하였다. 이외에도 학술적으로는 1~13회 AMF 조직위원, ICM 2014 전산위원장, 1~6회 ICIP 조직위원 등을 맡았으며, 중등수학과 관련하여는 수학능력시험 출제위원, IMO 2000 출제위원, 교과서 심의위원 등을 역임하였다.
- 기획처장
- 종합과학관 A동 A325호
- 02-3277-3451
- 면담 가능시간
- 이메일예약
- 연구관심분야
- 고속과학계산, 수치미분방정식, 역문제
연구실적
- Energy-conserving successive multi-stage method for the linear wave equation with forcing terms Journal of Computational Physics, 2023, v.489, 112255
- A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen-Cahn Equation with a Nonlocal Lagrange Multiplier JOURNAL OF SCIENTIFIC COMPUTING, 2022, v.90 no.1, 51
- Energy conserving successive multi-stage method for the linear wave equation Journal of Computational Physics, 2022, v.458, 111098
- Energy quadratization Runge-Kutta method for the modified phase field crystal equation Modelling and Simulation in Materials Science and Engineering, 2022, v.30 no.2, 24004
- Energy quadratization Runge–Kutta scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier Applied Mathematics Letters, 2022, v.132, 108161
- An energy stable Runge–Kutta method for convex gradient problems Journal of Computational and Applied Mathematics, 2020, v.367, 112455
- Long-time simulation of the phase-field crystal equation using high-order energy-stable CSRK methods Computer Methods in Applied Mechanics and Engineering, 2020, v.364, 112981
- A High-Order Convex Splitting Method for a Non-Additive Cahn-Hilliard Energy Functional MATHEMATICS, 2019, v.7 no.12, 1242
- A constrained convex splitting scheme for the vector-valued Cahn-Hilliard equation Journal of the Korean Society for Industrial and Applied Mathematics, 2019, v.23 no.1, 1-18
- A Second-Order Operator Splitting Fourier Spectral Method for Models of Epitaxial Thin Film Growth Journal of Scientific Computing, 2017 , 1-16
- Convex Splitting Runge-Kutta methods for phase-field models COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, v.73 no.11, 2388-2403
- First- and second-order energy stable methods for the modified phase field crystal equation Computer Methods in Applied Mechanics and Engineering, 2017, v.321, 1-17
- HIGHER ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS FOR THE ALLEN–CAHN EQUATION Journal of the Korean Society for Industrial and Applied Mathematics, 2017, v.21 no.1, 1~16
- Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme Journal of Computational Physics, 2017, v.347, 367-381
- Analysis and computational method based on quadratic B-spline FEM for the Rosenau-Burgers equation Numerical Methods for Partial Differential Equations, 2016, v.32 no.3, 877-895
- First and second order numerical methods based on a new convex splitting for phase-field crystal equation Journal of Computational Physics, 2016, v.327, 519-542
- A second order operator splitting method for Allen-Cahn type equations with nonlinear source terms Physica A: Statistical Mechanics and its Applications, 2015, v.432, 24-34
- First and second order operator splitting methods for the phase field crystal equation Journal of Computational Physics, 2015, v.299, 82-91
- A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN–CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION Journal of the Korean Society for Industrial and Applied Mathematics, 2014, 제18권 1호, 27-41
- A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions JOURNAL OF COMPUTATIONAL PHYSICS, 2014, v.258, 738-751
- A semi-analytical Fourier spectral method for the Allen-Cahn equation COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, v.68 no.3, 174-184
- An enhanced parareal algorithm based on the deferred correction methods for a stiff system JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, v.255, 297-305
- [학술지논문] A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen-Cahn Equation with a Nonlocal Lagrange Multiplier JOURNAL OF SCIENTIFIC COMPUTING, 2022, v.90 no.1 , 51-51
- [학술지논문] Energy quadratization Runge-Kutta scheme for the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier APPLIED MATHEMATICS LETTERS, 2022, v.132 no.108161 , 1-10
- [학술지논문] An energy stable Runge-Kutta method for convex gradient problems JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, v.367 no.1 , 112455-112455
- [학술지논문] Long-time simulation of the phase-field crystal equation using high-order energy-stable CSRK methods COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, v.364 no.0 , 112981-112981
강의
-
2025-1학기
-
미분적분학 강의 계획서 상세보기
- 학수번호 20406분반 04
- 1학년 ( 3학점 , 3시간) 수 3~3 (포451) , 금 2~2 (포451)
- 컴공1,사이버1, 인데부1, 연습시간(01~09분반 통합 운영)
-
-
2024-2학기
-
미분방정식 강의 계획서 상세보기
- 학수번호 20435분반 01
- 2학년 ( 3학점 , 3시간) 월 3~3 (포453) , 수 2~2 (포453)
-
수치미분방정식 강의 계획서 상세보기
- 학수번호 G10752분반 01
- 학년 ( 3학점 , 3시간) 월 5~6 (종A315)
-
-
2024-1학기
-
유한수학및프로그래밍
- 학수번호 35289분반 01
- 2학년 ( 3학점 , 3시간) 월 2~2 (종A315) , 목 3~3 (종A315)
-
수리모델링
- 학수번호 38190분반 01
- 4학년 ( 3학점 , 3시간) 월 3~3 (종A315) , 수 2~2 (종A315)
-
-
2023-2학기
-
미분적분학 강의 계획서 상세보기
- 학수번호 20406분반 01
- 1학년 ( 3학점 , 3시간) 화 5~5 (포363) , 목 6~6 (포363)
- 자연대1, 미분적분학(01~03분반) 연습시간 통합적으로 진행
-
수치미분방정식 강의 계획서 상세보기
- 학수번호 34223분반 01
- 3학년 ( 3학점 , 3시간) 화 6~6 (포365) , 목 4~4 (포365)
-
-
2023-1학기
-
미분적분학 강의 계획서 상세보기
- 학수번호 20406분반 02
- 1학년 ( 3학점 , 3시간) 수 3~3 (포452) , 금 2~2 (포452)
- 컴공1,사이버1, 타단대생수강불가, 월8교시 연습시간(01~08분반 연습시간 동일)
-
과학계산
- 학수번호 G10523분반 01
- 학년 ( 3학점 , 3시간) 목 5~6 (종A315)
-
학력
New York University Ph.D.(수학)