이준엽(李俊燁) 교수

수학과

이준엽 프로필 사진
이준엽 교수는 수학전공 교수로서 수치해석과 과학계산을 전공하고 있다. 뉴욕대학교(NYU) Courant Institute에서 박사학위를 취득하였으며, <SIAM Review>, <Inverse Problems>, <J. of Computation Physics> 등을 포함하는 SCI 저널에 역문제의 수치해법 및 수치미분방정식의 고속해법 관련한 40여 편의 논문을 게재하였다.
   대외적으로는 한국연구재단 자연과학단장, 한국산업응용수학회(KSIAM)의 부회장, 총무이사, 편집이사 등과 대한수학회(KMS)의 전산이사와 사업이사 등을 역임하였고, 교내에서는 관리처장, 입학관리부처장, 수리물리과학부 학부장과 중점연구소인 수리과학연구소장 직을 수행하였다. 
   이외에도 학술적으로는 1~13회 AMF 조직위원, ICM 2014 전산위원장, 1~6회 ICIP 조직위원 등을 맡았으며, 중등수학과 관련하여는 수학능력시험 출제위원, IMO 2000 출제위원, 교과서 심의위원 등을 역임하였다.
  • 종합과학관 A동 A325호
  • 02-3277-3451
  • 면담 가능시간
    • 이메일예약
  • 연구관심분야
    • 고속과학계산, 수치미분방정식, 역문제
연구실적
  • Energy-conserving successive multi-stage method for the linear wave equation with forcing terms Journal of Computational Physics, 2023, v.489, 112255
    SCIE Scopus dColl.
  • A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen-Cahn Equation with a Nonlocal Lagrange Multiplier JOURNAL OF SCIENTIFIC COMPUTING, 2022, v.90 no.1, 51
    SCIE Scopus dColl.
  • Energy conserving successive multi-stage method for the linear wave equation Journal of Computational Physics, 2022, v.458, 111098
    SCIE Scopus dColl.
  • Energy quadratization Runge-Kutta method for the modified phase field crystal equation Modelling and Simulation in Materials Science and Engineering, 2022, v.30 no.2, 24004
    SCIE Scopus dColl.
  • Energy quadratization Runge–Kutta scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier Applied Mathematics Letters, 2022, v.132, 108161
    SCIE Scopus dColl.
  • An energy stable Runge–Kutta method for convex gradient problems Journal of Computational and Applied Mathematics, 2020, v.367, 112455
    SCIE Scopus dColl.
  • Long-time simulation of the phase-field crystal equation using high-order energy-stable CSRK methods Computer Methods in Applied Mechanics and Engineering, 2020, v.364, 112981
    SCIE Scopus dColl.
  • A High-Order Convex Splitting Method for a Non-Additive Cahn-Hilliard Energy Functional MATHEMATICS, 2019, v.7 no.12, 1242
    SCIE Scopus dColl.
  • A constrained convex splitting scheme for the vector-valued Cahn-Hilliard equation Journal of the Korean Society for Industrial and Applied Mathematics, 2019, v.23 no.1, 1-18
    KCI dColl.
  • A Second-Order Operator Splitting Fourier Spectral Method for Models of Epitaxial Thin Film Growth Journal of Scientific Computing, 2017 , 1-16
    SCIE Scopus dColl.
  • Convex Splitting Runge-Kutta methods for phase-field models COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, v.73 no.11, 2388-2403
    SCIE Scopus dColl.
  • First- and second-order energy stable methods for the modified phase field crystal equation Computer Methods in Applied Mechanics and Engineering, 2017, v.321, 1-17
    SCIE Scopus dColl.
  • HIGHER ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS FOR THE ALLEN–CAHN EQUATION Journal of the Korean Society for Industrial and Applied Mathematics, 2017, v.21 no.1, 1~16
    KCI dColl.
  • Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme Journal of Computational Physics, 2017, v.347, 367-381
    SCIE Scopus dColl.
  • Analysis and computational method based on quadratic B-spline FEM for the Rosenau-Burgers equation Numerical Methods for Partial Differential Equations, 2016, v.32 no.3, 877-895
    SCIE Scopus dColl.
  • First and second order numerical methods based on a new convex splitting for phase-field crystal equation Journal of Computational Physics, 2016, v.327, 519-542
    SCIE Scopus dColl.
  • A second order operator splitting method for Allen-Cahn type equations with nonlinear source terms Physica A: Statistical Mechanics and its Applications, 2015, v.432, 24-34
    SCIE Scopus dColl.
  • First and second order operator splitting methods for the phase field crystal equation Journal of Computational Physics, 2015, v.299, 82-91
    SCIE Scopus dColl.
  • A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN–CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION Journal of the Korean Society for Industrial and Applied Mathematics, 2014, 제18권 1호, 27-41
    KCI dColl.
  • A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions JOURNAL OF COMPUTATIONAL PHYSICS, 2014, v.258, 738-751
    SCIE Scopus dColl.
  • A semi-analytical Fourier spectral method for the Allen-Cahn equation COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, v.68 no.3, 174-184
    SCIE Scopus dColl.
  • An enhanced parareal algorithm based on the deferred correction methods for a stiff system JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, v.255, 297-305
    SCIE Scopus dColl.
  • [학술지논문] A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen-Cahn Equation with a Nonlocal Lagrange Multiplier JOURNAL OF SCIENTIFIC COMPUTING, 2022, v.90 no.1 , 51-51
    SCIE
  • [학술지논문] Energy quadratization Runge-Kutta scheme for the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier APPLIED MATHEMATICS LETTERS, 2022, v.132 no.108161 , 1-10
    SCI
  • [학술지논문] An energy stable Runge-Kutta method for convex gradient problems JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, v.367 no.1 , 112455-112455
    SCI
  • [학술지논문] Long-time simulation of the phase-field crystal equation using high-order energy-stable CSRK methods COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, v.364 no.0 , 112981-112981
    SCI
  • [학술지논문] A High-Order Convex Splitting Method for a Non-Additive Cahn-Hilliard Energy Functional MATHEMATICS, 2019, v.7 no.12 , 1242-1242
    SCIE
  • [학술지논문] A constrained convex splitting scheme for the vector-valued Cahn-Hilliard equation Journal of the Korean Society for Industrial and Applied Mathematics, 2019, v.23 no.1 , 1-18
    KCI
강의
  • 2024-2학기

  • 2024-1학기

    • 유한수학및프로그래밍

      • 학수번호 35289분반 01
      • 2학년 ( 3학점 , 3시간) 월 2~2 (종A315) , 목 3~3 (종A315)
    • 수리모델링

      • 학수번호 38190분반 01
      • 4학년 ( 3학점 , 3시간) 월 3~3 (종A315) , 수 2~2 (종A315)
  • 2023-2학기

  • 2023-1학기

학력

New York University Ph.D.(수학)