민조홍 교수는 여러 자연현상에 대한 수리모델링 및 근사알고리듬의 개발과 분석에 연구를 집중해왔다. 전산기하학, 편미분방정식에 대한 유한차분 근사법, Helmoltz-Hodge 분해 등의 내용을 연구해왔으며, 최근의 연구내용은 Shortley-Weller 유한차분법의 수렴성 증명이다. 연구결과들은 22편의 논문으로 발표되었는데, 이 중 13편은 SCI 수리물리 분야 상위 10% 저널인 <Journal of Computational Physics(JCP)>에, 4편은 응용수학 분야 상위 10% 저널인 <Journal of Scientific Computing>에 출판되었다. 특히나 JCP저널은 수치해석학 최고의 저널 중 하나로, 민조홍 교수의 연구결과는 2007년과 2009년, 분기별 ’top 25 hottest articles’로 뽑혔다.
Gradient Explosion Free Algorithm for Training Recurrent Neural NetworksJournal of the Korean Society for Industrial and Applied Mathematics, 2020, v.24 no.4, 331-350
A semi-implicit and unconditionally stable approximation of the surface tension in two-phase fluidsJOURNAL OF COMPUTATIONAL PHYSICS, 2019, v.397, UNSP 108829
AN ENERGY-STABLE AND SECOND-ORDER ACCURATE METHOD FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONSJournal of the Korean Society for Industrial and Applied Mathematics, 2019, v.23 no.2, 93~114
AN OPTIMAL CONTROL APPROACH TO CONFORMAL FLATTENING OF TRIANGULATED SURFACESJournal of the Korean Society for Industrial and Applied Mathematics, 2019, v.23 no.4, 351-365
AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE GRADIENT METHODJOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2018, v.22 no.1, 1~13
An efficient MILU preconditioning for solving the 2D Poisson equation with Neumann boundary conditionJOURNAL OF COMPUTATIONAL PHYSICS, 2018, v.356, 115-126
An energy-stable method for solving the incompressible Navier–Stokes equations with non-slip boundary conditionJournal of Computational Physics, 2018, v.360, 104-119
Comparison of eigenvalue ratios in artificial boundary perturbation and Jacobi preconditioning for solving Poisson equationJournal of Computational Physics, 2017, v.349, 1-10
AN ELEMENTARY PROOF OF THE OPTIMAL RECOVERY OF THE THIN PLATE SPLINE RADIAL BASIS FUNCTIONJournal of the Korean Society for Industrial and Applied Mathematics, 2015, v.19 no.4, 409-416
A REVIEW OF THE SUPRA-CONVERGENCES OF SHORTLEY-WELLER METHOD FOR POISSON EQUATIONJournal of the Korean Society for Industrial and Applied Mathematics, 2014, 제18권 1호, 51-60
CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITIONJournal of the Korean Society for Industrial and Applied Mathematics, 2014, 제18권 4호, 305-315